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Dynamics, Simulation & Control of Orbital

Modules for On-orbit Assembly
Hrishik Mishra, Tommaso Vicariotto, Marco De Stefano

Abstract—In the context of in-orbit assembly, modular build-
ing blocks offer the advantage of distributed launches. After the
orbit-injection, the overall motion control requires the individual
modules to approach each other while regulating their relative
shape and the total formation. This kind of formation control
has already been addressed for rigid body modules. However,
in practical cases, each module might be a multibody (with
rotors) system. To address the control problem for such a
fleet of fixed-inertia multibody modules, we propose a novel
dynamics formulation that is inertia-decoupled, singularity-free,
and invariant of their absolute poses. We extend the passive
decomposition theory for deriving new representative systems
corresponding to the total momentum (locked) and relative shape
variations. We exploit the dynamics to design two distinct control
laws with complementary mission benefits to regulate the locked
and relative motions. We also leverage the proposed formulation
to design a Hardware-in-the-Loop (HIL) framework, in which the
facility reproduced the relative motions while total momentum
was propagated in software. Furthermore, the proposed HIL
framework and the motion control are experimentally validated.

Index Terms—Space Robotics and Automation, Multi-Robot
Systems, Dynamics, Control.

I. INTRODUCTION

THE economic benefit of distributed launches is driv-

ing the assembly of orbital structures towards modular

designs which are manufactured on earth and assembled in

orbit [1]. To support the in-orbit assembly, the European

Union has commissioned the ORU-BOAS project [2], which

considers the deployment of orbital modules to perform life-

extension operations. These modules are autonomous small

satellites, equipped with on-board Reaction Control System

(RCS) and reaction wheels (RWs), i.e., they are fixed-inertia

multibody systems. For assembly, two modules are mechan-

ically connected through a dedicated interface, as shown

in [2]. After the orbit injection, motion control requires the

individual modules to approach each other while regulating

their relative shape and the overall (locked) formation. This

formation control has already been addressed for rigid body

modules using passive decomposition theory [3], [4]. For on-

orbit assembly, control strategies have been proposed [5], [6]

with rigid body assumptions, and tested on ground [7], [8].

While this assumption was acceptable for large satellites, the

couplings with internal actuators (RWs) cannot be neglected in
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Fig. 1: Formation control between two satellites. Left: The relative
motion on the OOS-SIM [9], Right: Absolute motion in software.

the controller design for small modules with low form factors,

see e.g. [2]. In particular, these modules are multibody systems

composed of a rigid-body structure with RWs and the related

formation control problem has not been addressed before.

During the mission development, the motion control algo-

rithms must undergo on-ground validation, e.g., using relevant

0-g environment replicated by Hardware-in-the-Loop (HIL)

robotic simulators [10]. These simulators comprise robotic

manipulators, which replicate the 0-gravity motion of an

orbital mechanism on-ground. A common approach is to use

two industrial robots to replicate the motion of the two orbital

agents, see e.g., EPOS [11], INVERITAS [12], Platform-ART

[13], AMDS [14] etc. However, the facilities in [11], [12],

[13] focus mainly on the approach phases and not contact-

phases. In [14], the initial momentum of the satellites is

neglected. For validation of mission phases that require contact

dynamics, e.g., grasping or docking, an advanced facility with

force measurements is employed, e.g., the DLR OOS-SIM

(On-orbit Servicing Simulator) [9], shown in Fig. 1. In [15],

a Lagrangian matching approach was proposed to achieve

full consistency of a single satellite. However, due to limited

workspace of the robotic manipulators, this approach becomes

limited when absolute motions are large and dynamic. This

affects the on-ground demonstration [16]. Therefore, a HIL

framework that replicates the relative motion of the agents in

a dynamically consistent way is a promising solution [16].

However, in [16], the formulation was considered relative to

a nominal trajectory, which required the computation of two

dynamic models and also acceleration measurements, which

are computational and sensory overheads.

To this end, the contribution of this paper is threefold.

First, a momentum-shape dynamics formulation for a fleet

of multibody modules is proposed. The contribution here is

the sequential application of reduction theory [17] for each
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module followed by passive decomposition theory [3], [4] for

the fleet of modules. The key advantage of this formulation is

that the motion is described in terms of the total momenta and

the shape (relative and RWs motion), which are key mission

parameters for motion control. This formulation renders the

locked-shape regulation problem time-invariant, unlike simply

tracking a leader satellite that requires its acceleration mea-

surements. Second, two complementary control laws: Free-

flying and Hierarchical, are proposed to enable on-orbit as-

sembly by regulating the total and relative motions of the

modules. The free-flying control law prioritizes convergence,

while the hierarchical controller optimizes fuel efficiency. The

Cartesian tasks in such missions are time-constrained and

necessitate a fast response from the actuators. To achieve

this, both control approaches are based on inertia-shaping of

RWs’ actuator dynamics and passivity-based control of the

Cartesian dynamics. Third, a novel HIL simulation framework

is realized and experimentally validated on the DLR OOS-

SIM, wherein the relative motion is reconstructed on the

hardware while simulating momentum in software. The key

benefit of this approach is that acceleration measurements are

avoided in contrast to [16]. The proposed free-flying controller

is experimentally validated using this HIL approach.

The paper is structured as follows. Sec. II introduces the

preliminaries which aid the formulation. In Sec. III the pro-

posed method is described. Sec. IV introduces the developed

controller. Simulation and hardware results can be found in

Sec. V and VI, respectively. Sec. VII concludes the paper.

II. PRELIMINARIES ON DYNAMICS FORMULATION

In this section, relevant details about rigid body motion on

SE(3) group are provided. The pose of a rigid body is a matrix

group representation of SE(3) and is written as g = (R, p),
where R ∈ SO(3) is the rotation matrix and p ∈ R

3 is the

position. The reader is referred to [17], [18] for the detailed

descriptions of the introduced quantities. The identity of the

SE(3) group is I4, where Ik is a square identity matrix of

dimension k. The tangent space at I4 is the se(3) algebra,

which may be referenced in either the body or a spatial

frames. Analogously, the cotangent space at I4 is the dual

space of wrenches, denoted as se(3)∗. The se(3) (so(3))
matrix algebra and its dual se(3)∗ (so(3)∗) are isomorphic

to the space of body velocities and wrenches on R
6 (R3).

The isomorphisms are written as (•)∧ : R3 → so(3), so(3)∗

and (•)∨ : so(3), so(3)∗ → R
3, and (•)∧ : R6 → se(3), se(3)∗

and (•)∨ : se(3), se(3)∗ → R
6, e.g. given a twist, V ∈ R

6,

V ∧ ∈ se(3). The poses and velocities that are subscripted

once are referenced relative to the inertial frame, {O}, e.g.

(g1, V1) denote the inertial state-space of the leader Satel-

lite’s frame, S1, see Fig. 2. The Adjoint action of a pose

g, Ad : se(3) → se(3), transforms elements of se(3) algebra

between spatial and body frames, see [18]. The adjoint map

of the se(3) algebra onto itself is, ad : se(3) → se(3), which

is the differential of the Ad map. This is denoted by adV

and its coadjoint map by, ad⊤

V : se(3)∗ → se(3)∗. In

this work, the rigid body velocity follows the convention

V = (v, ω) ∼= se(3), where v (ω) is the linear (angular)

Leader
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Fig. 2: Fixed-inertia multibody satellites, equipped with RWs and
RCS, in a centralized flight formation with S1 as the leader satellite.

velocity, respectively. In this paper, tr(•) denotes the trace

of the argument matrix, and sk(X ) is the skew-part of the

argument s.t. sk(X ) = 1
2 (X−X T ), and diag(•) is the diagonal

concatenation of argument matrices.

Dynamics of Modules

Each module is modeled as a multibody system comprising

its rigid structure and RWs. In a microgravity environment, its

dynamics is given by the fixed-inertia Hamel’s equations [17]:

Mζ̇ + C(ζ)ζ = F, M =







[
m 04
04 I

] [
04
IwA

]

[

04 AT Iw

]

AT IwA







C =





[
ω∧m 04
04 ω∧I

] [
04

ω∧IwA

]

04×8 04





(1)

where ζ = (v, ω, θ̇), θ̇ ∈ R
3 is the velocity of the three

RWs, and F = (fb, τb, τw) comprises the external forces

and torques acting on the satellite, and the internal torques,

respectively. The inertia matrix is M, while C(ζ) is the non-

unique centrifugal/Coriolis (CC) matrix. Here, m is the total

mass, I and Iw are the locked multibody [17] and RWs

inertias, respectively. Also, A is the kinematic map of the RWs

frame w.r.t. the module’s reference frame. For light-weight

modules with three RWs, A is commonly I3 [19]. Noticeably,

Eq.(1) contains couplings among the angular components of

the inertia matrix, which requires acceleration measurements

to decouple the RWs dynamics from angular motion.

Alternatively, the velocity of a module can be decomposed

into a locked angular velocity, computed as a function of the

angular momentum, and its shape (RWs) velocity, see [17],

[20]. This results in inertia-decoupled dynamics for articulated

systems, e.g., a spacecraft equipped with a manipulator. This

approach is employed to write the velocities of a module as:

ζ̃ =






v
µ

θ̇




 =

[

ξ

θ̇

]

=





I3 0 0
0 I3 ΛA
0 0 I3










v
ω

θ̇




 (2)

where Λ = (I−1Iw) is the dynamic coupling [17]. This

term is obtained from the definition of the module’s total

angular momentum Hω = Iω + IwAθ̇. Specifically, the new

momentum-based velocity term is µ = I−1Hω . This velocity

decomposition results in inertia-decoupled dynamics as:

M̃
˙̃
ζ + C̃(ζ̃)ζ̃ = F̃ (3)
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where ζ̃ = (υ, µ, θ̇) and F̃ = (fb, τb, τ̃w), such that,

τ̃w = τw − (ΛA)T τb. (4)

The inertia and CC matrices are computed in Appendix 1.

III. PROPOSED RELATIVE DYNAMICS

Consider a set of modules, illustrated in Fig. 2, and modeled

as in (1). For the sake of simplicity, we derive the dynamics

for the scenario comprising two modules, which provides

the framework for the n agents problem in Fig. 2. During

formation control, the dynamics of two modules is described

trivially by stacking (1) for each module as:

M̃1,2
˙̃
ζ1,2 + C̃1,2(ζ̃1,2)ζ̃1,2 = F̃1,2 (5)

where ζ̃1,2 = (ξ1, ξ2, θ̇1, θ̇2) comprising ξi = (υi, µi)
and F̃1,2 = (fb1, τb1, fb2, τb2, τ̃w1

, τ̃w2
) includes τ̃wi

,

given in (4), and M̃1,2 = diag(M1,M2,Mθ1,Mθ2) and

C̃1,2 =
[

C̃ξ⊤

1 C̃ξ⊤

2 C̃ θ̇⊤

1 C̃ θ̇⊤

2

]⊤

, s.t. i defines the module’s

index. See Appendix 1 for the constituent terms in M̃1,2, C̃1,2.

Note that (5) simply stacks the absolute motion of the two

modules, while concealing the coupling effects in relative

motions. Therefore, we rewrite the dynamics of the two

modules by extending the passive decomposition theory, i.e.

the motion decomposition into locked and shape systems

[3]. The locked system refers to a momentum-based velocity

describing the motion of the two modules as a rigid entity,

and hence, the total dynamics. On the other hand, the shape

system represents the formation within the entity, i.e. the

relative dynamics. In contrast with [3] where only rigid bodies

were considered, here, we extend the method for fixed-inertia

multibody systems, in which the locked-shape dynamics of the

formation are coupled with the internal shape (RWs) dynamics

of each module, and cannot be ignored in control design.

These representative systems are derived in a centralized

fashion. The leader module is designated as S1, providing a

reference for relative quantities, e.g., relative pose g12 and

velocity ξE , computed in the frame attached to S2. The locked

motion is resolved in the frame attached to S1.

Consequently, the locked and shape velocities, denoted as

ξL and ξE , replace the absolute velocities of the two modules

in the novel set of equations of motion. The aforementioned

representation is obtained as follows:

ξL = M−1
totH, ξE = ξ2 − Ad−1

g12
ξ1 (6)

where Mtot is the locked inertia of the two modules, s.t.

Mtot = M1 + Ad−T
g12

M2Ad−1
g12

, and, H is the total body mo-

mentum in the body frame of S1, computed as,

H = M1ξ1 + Ad−T
g12

M2(ξE + Ad−1
g12

ξ1)

= (M1 + Ad−T
g12

M2Ad−1
g12

)ξ1 + Ad−T
g12

M2ξE

= Mtotξ1 + Ad−T
g12

M2ξE .

(7)

Therefore, the locked velocity is derived as

ξL = M−1
totH = ξ1 +A∗ξE , A∗ = M−1

tot Ad−T
g12

M2

= (I6 −A∗Ad−1
g12

)ξ1 +A∗ξ2.
(8)

As a result, the complete evolution of the initial states, (5),

into the new set of representative velocities is accomplished

through the following transformation:







ξL
ξE
θ̇1
θ̇2








︸ ︷︷ ︸

ζ∗

=








I6 −A∗Ad−1
g12

A∗ 0 0

−Ad−1
g12

I6 0 0
0 0 I3 0
0 0 0 I3








︸ ︷︷ ︸

S








ξ1
ξ2
θ̇1
θ̇2






. (9)

We employ this invertible transformation, S, to derive a

novel formulation for the dynamics of two modules, encapsu-

lating the total and relative motions in a single set of equations.

The new dynamic terms are computed through:
{

M∗(g12) = S−TM̃1,2S
−1

C∗(g12, ζ
∗) = S−T C̃1,2S

−1 + S−TM̃1,2
d
dt
S−1

(10)

The full form of M∗(g12) and C∗(g12, ζ
∗) are presented in

Appendix 2. Note that in (10), although the inertia matrix

M∗ and its variation C∗ depend on the relative pose g12,

their computation is free of mathematical singularities. The

use of the SE(3) group to parameterize the relative pose avoids

representation problems, e.g., gimbal lock. This proposed

formulation is written as follows:

M∗(g12)ζ̇
∗ + C∗(g12, ζ

∗)ζ∗ = F ∗ (11)

where F ∗ = S−⊤F̃1,2 = (FL, FE , τ̃w1
, τ̃w2

),

M∗(g12) =diag(ML, ME , Mθ1 , Mθ2)

C∗(g12, ζ
∗) =








CLL CLE CLθ1 CLθ2

CEL CEE CEθ1 CEθ2

−CT
Lθ1

−CT
Eθ1

Cθ1 0
−CT

Lθ2
−CT

Eθ2
0 Cθ2







.

(12)

Remark 1: Note that (11) preserves the Lagrangian structure

(energy) of the total system. This follows because the transfor-

mation applied for achieving (11) is passivity-preserving [21].

Also, the two representative systems (locked and shape) are

inertia-decoupled [4].

Application to a Hardware-in-the-Loop

The proposed dynamics is suitable to ensure physical con-

sistency of the simulated momentum on a HIL facility for

motion simulation, see Fig. 1. In particular, the architecture

of the motion replicated on a HIL facility (shape motion) and

the simulated mission scenario (locked motion) is illustrated

in Fig. 3, where the proposed contribution is emphasized in

the dashed box.

The absolute poses of the two modules are computed as,

gi =

∫ t

t0

(giV
∧

i ) dt ∀i = 1, 2 (13)

where Vi is reconstructed in simulation. This is performed

through the relative mapping block in Fig. 3, which computes

the initial states by inverting the transformations (2) and (9),

as follows

(ξin, θ̇tot) = S−1(ξfin, θ̇tot) (14)
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OBC-1

OBC-2

Relative

Mapping

 

 

Sensor

Block-1

Sensor

Block-2

F̃2

F̃1 F̃L

FE

Fc

(g̃1, V1)

(g̃2, V2)
ξE-Dyn.

(11)

(ξL, θ̇i)-Dyn.

(11)

Fig. 3: HIL block diagram with OBC-i actuation mapped as

F̃i = (Fi, τ̃wi) to FE and F̃L = (FL, τ̃w1, τ̃w2), Fc is the measured
interaction wrench between the modules. The industrial robots are
commanded using (g̃i, Vi). The Relative Mapping block exploits
measurements of shape (g̃12, V12) and software-simulated variables

(g1, ξL, θ̇1, θ̇2) to reconstruct all the states.

where ξin = (ξ1, ξ2), ξfin = (ξL, ξE), θ̇tot = (θ̇1, θ̇2), are

the stacked velocities, and therefore, the rigid body velocities

of the modules are obtained as,

Vi = ξi −

[
0

ΛiAi

]

θ̇i. (15)

The OBC (On-Board Computer) in Fig. 3 represents the

controller to be validated on the HIL facility, e.g. for the

module 1 (OBC-1) and 2 (OBC-2).

In general, a Cartesian pose or velocity is provided to the

position interface of a HIL facility, thus, the robot moves

in Cartesian space while exploiting its inverse kinematics,

see [22]. For the proposed framework the relative veloc-

ity between the commanded motions is then computed as

V12 = V1 − Ad−1
g12

V2, and the relative pose is computed as,
{

g̃1(t) = g̃2(t)g12(t)
−1, g̃2(t) = g2(0). (16)

This is the final command to the robot, as shown in Fig. 3. In

contrast to [16], acceleration measurements and two models

per module are not required in the proposed HIL approach.

Note that in (16), the HIL robot i = 2 is static, while the

robot i = 1 simulates the relative motion. In this work, this

HIL approach is exploited so that the force sensor that mea-

sures the interaction wrench Fc is attached to the static robot

which avoids the sensor’s dynamic compensation problem.

Thus, Fc measures the equal and opposing contact forces

on the modules. Although one robot is sufficient to simulate

relative motions on the HIL, the motion of both modules might

be required for validation. In this case, (13) will be integrated

to obtain gi for each module and commanded to each of the

HIL robots. This highlights the flexibility of the proposed

approach for both HIL implementations.

IV. PROPOSED CONTROL

The proposed dynamics aids control design for either the

locked or relative motion or both simultaneously. If the

controller influences only the relative motion, the task is

intentionally distributed between the two agents. As a result,

one module can uniquely manage the relative pose error.

Alternatively, both modules can contribute to the control task

with variable weight. This second controller is suitable for the

coordinated motion of modules.

In this section, we exploit the dynamics for the two modules,

i.e. (11) to propose two novel control laws and prove their

stability using Lyapunov’s direct method. To that end, the

following concepts are introduced from [18, §5.3].

Lemma 1: Considering two poses g(R, p), g(R, p) ∈ SE(3)
for two different frames, the right pose error is given by

η = g−1g = (r, Re), r = R
T
(p− p), Re = R

T
R, (17)

Lemma 2: Given two orientations, R,R ∈ SO(3), an

energy function φ : SO(3) → R+ is defined for the

potential associated with the orientation difference, as

φ(Re) =
1
2 tr(Kp(I3 −Re)), and its time-derivative is

expressed as φ̇ = (sk(KpRe)
∨)⊤ω, where ω is the body

velocity of R. Here, Kp is the positive proportional gain.

The controller requirements are posed as (g1, g12) should

be regulated about setpoints (g1, gE), which gives the right

pose errors
(
(ηL(rL, ReL), ηE(rE , ReE )

)
. In contrast to [18,

§5.3], which achieved motion tracking of a single rigid body

on SE(3), and [3], [4], which achieved formation control of

rigid bodies on SE(3) × SE(3), the goal here is to stabilize

the motion on SE(3)× (SE(3)× R
3 × R

3) with coupled dy-

namics. We achieve this using two controllers in a centralized

fashion for a system of multibody modules. The first approach

employs both external (RCS) and internal (RWs) actuators

simultaneously. The second approach maximizes the RWs

usage, thereby reducing fuel consumption and ensuring higher

accuracy.1 Importantly, the RWs response is improved in the

control laws by employing the inertia-shaping factors ΛT
i ,

which inherently arise through the proposed dynamics in (4).

Since we employ a centralized approach, the locked pose error

is directly imposed on the S1. Thus, in the control design,

gL = g1 s.t. ηL = η1. The controllers are summarized below,

1) Free-flying controller: This controller simultaneously

employs the RCS and the RWs toward convergence of the

locked and shape regulation tasks (equal priority), while being

robust against mutual interactions. This approach is proposed

in the theorem below as a passivity-based control law.

Theorem 1: Consider two modules, whose dynamics is mod-

eled in (11), with pose errors ηL(rL, ReL) and ηE(rE , ReE )
observed in (17), and velocities ξL(vL, µL), ξE(vE , µE), cor-

responding to the locked and the shape systems, respectively.

Their closed-loop dynamics resulting from the control law,

F ∗ = (FL, FE , τ̃w1
, τ̃w2

), as

FL =

[

−K̄L
d υL −RT

eL
K̄L

p rL
−KL

d µL − γL

]

︸ ︷︷ ︸

feedback

+ FL
c

︸︷︷︸

feedforward

(18a)

FE =

[

−K̄E
d υE −RT

eE
K̄E

p rE
−KE

d µE − γE

]

+A∗T

[

RT
eL
K̄L

p rL
γL

]

︸ ︷︷ ︸

feedback

+ FE
c

︸︷︷︸

feedforward

(18b)

1Under the assumption of continuous-time actuation, both controllers
achieve convergence. However, the thruster discretization causes errors, and
the second controller outperforms the first in inertial attitude control.
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τ̃w1
= −K1

d θ̇1 −RT
21A1γE +A1γL + Fw1

c (18c)

τ̃w2
= −K2

d θ̇2 +A2γE + Fw2
c (18d)

is uniformly asymptotically stable.

Here, γL = sk(KL
p ReL)

∨, γE = sk(KE
p ReE )

∨ have been

used to aid readability and represent the angular potentials, sat-

isfying Lemma 2. The damping gains for translation and angu-

lar motions are Df = diag(K̄L
d , K̄

E
d ,KL

d ,K
E
d ,K1

d ,K
2
d) ≻ 0,

while the proportional gains are (K̄L
p , K̄

E
p ) ≻ 0 for translation

and (KL
p ,K

E
p ) ≻ 0 for the angular motions. The couplings

between the representative systems and the RWs are computed

using (12) as:

FL
c =CLθ1 θ̇1 + CLθ2 θ̇2, FE

c = CEθ1 θ̇1 + CEθ2 θ̇2

Fw1
c =Λ1Cθ1LξL + Λ1Cθ1EξE + Λ1Cθ1 θ̇1

Fw2
c =Λ2Cθ2LξL + Λ2Cθ2EξE + Λ2Cθ2 θ̇2.

Furthermore, the closed-loop system is output-strict passive,

i.e., velocity ζ∗ is bounded for bounded disturbances [21].

Before presenting the proof, note that the control law in (18)

consists of a PD-type feedback term, and the feedforward term

to ensure inertia-shaping.

Proof 1: The stability of the controller is proved through

Lyapunov’s direct method. The candidate function, Wf , i.e.,

the total energy of the system, considering a shaping factor

Λ⊤
i on the RWs inertia, is defined as

Wf =
1

2
ζ∗TMfζ

∗ +
1

2
∆xT

f Kf∆xf

+
1

2
tr(KE

p (I3 −ReE )) +
1

2
tr(KL

p (I3 −ReL))
(19)

which satisfies the bounds α ≤ Wf ≤ α, see Lemma 3 for

boundedness argument. Here,

Mf = diag(ML,ME ,Λ
T
1 Mθ1 ,Λ

T
2 Mθ2),

∆xf = (rL, rE), Kf = diag(KL
p ,K

E
p ).

The derivative of Wf is obtained by exploiting Lemma 2, as

Ẇf = ζ∗TMf ζ̇
∗ +∆xT

f Kf∆ẋf + γT
EωE + γT

Lω1. (20)

Reformulating the linear potential and employing (2) and

(9), the velocities ω1 and ωE are expressed as functions of

ξL, ξE , θ̇1, θ̇2. Thus, the derivative takes the form:

Ẇf =
[

(R1K
L
p ∆xL)

T γT
L

]





[

υL
µL − Λ1A1θ̇1

]

−A∗

[
υE
µE

]




+
[

(RT
21K

E
p ∆xE)

T γT
E

]
[

υE + p∧21(R21Λ1θ̇1)

µE +R21Λ1θ̇1 − Λ2θ̇2

]

+ ζ∗TMf ζ̇
∗.

Introducing the free-flying control law, (18), and leveraging

the skew-symmetric property of Ṁ − 2C, we obtain

Ẇf = −ζ∗TDf ζ̇
∗ ≤ 0. (21)

This proves the uniform stability about the equilibrium con-

figurations ηL and ηE . Thus, the system’s asymptotic stability

is concluded by invoking LaSalle’s invariance principle [23].

Next, we prove the robustness against mutual interactions.

Let Fd2 = −Fd1 = Fc, be the disturbance on each module

(see (1)) due to mutual interaction, resulting in shape and

locked disturbance wrenches, F̃E = Fc and F̃L = 0, respec-

tively, using (11). Considering Wf as the storage function, we

get, Ẇf = −ζ∗
⊤

Dfζ
∗ + ξ⊤EFc, which is the proof [21]. �

However, the extensive use of RCS actuation (thruster fuel)

imposes limitations on the operation lifespan of the modules.

Note that the locked system control requires both modules to

be actuated, whereas shape control can be achieved with one.

2) Hierarchical controller: A passivity-based controller,

relying on a hierarchy that prioritizes the attenuation of

angular momentum of the locked system as a prerequisite

before module re-orientation. Thus, each control hierarchy is

associated with its corresponding actuator and control law.

The first level hierarchical controller utilizes RCS for external

actuation and is regulated by the following theorem.

Theorem 2: Consider two modules, whose coupled dynam-

ics is modeled in (11), with linear error functions only, rL and

rE , observed in (17), and velocities ξL(vL, µL), ξE(vE , µE).
Their closed-loop dynamics with the first hierarchical control

law, FH1 = (FL, FE), designed as

FL =

[

−K̄L
d υL −RT

eL
K̄L

p rL
−KL

d µL

]

︸ ︷︷ ︸

feedback

+ FL
c

︸︷︷︸

feedforward

FE =

[

−K̄E
d υE −RT

eE
K̄E

p rE
−KE

d µE

]

+A∗T

[

RT
eL
K̄L

p rL
0

]

︸ ︷︷ ︸

feedback

+ FE
c

︸︷︷︸

feedforward

(22)

is uniformly asymptotically stable.

Here, the couplings, FL
c and FE

c , as in Th. 1, are introduced

to ensure the inertia-shaping of the RWs. The damping gains

are Dh1
= (K̄L

d ,K
L
d , K̄

E
d ,KE

d ) ≻ 0, while the proportional

gains are Kh1
= (K̄L

p , K̄
E
p ) ≻ 0 for translation.

Proof 2: Consider the Lyapunov candidate function as the

sum of the rigid motion kinetic energy and the linear potential

energy of the system, as

Wh1
=

1

2
V T
h1
Mh1

Vh1
+

1

2
∆xT

h1
Kh1

∆xh1
(23)

which satisfies the bounds α ≤ Wh1
≤ α, see Lemma 3 for

boundedness argument. Here,

Mh1
= diag(ML,ME), Vh1

= (ξL, ξE), ∆xh1
= (rL, rE).

The derivative of the candidate is obtained as

Ẇh1
= V T

h1
Mh1

V̇h1
+∆xT

h1
Kυh1

. (24)

Introducing the first hierarchical control law, (22), and lever-

aging the skew-symmetric property of Ṁ − 2C, we obtain

Ẇh1
= −V T

h1Dh1
V̇h1 ≤ 0. (25)

This proves the uniform stability of the considered system in

the boundaries of the equilibrium positions rL and rE , (17),
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and of the angular stabilization, i.e. cancellation of momentum

that might be gained due to residual errors and inadvertent

contacts. The system’s asymptotic stability is concluded by

invoking LaSalle’s invariance principle [23]. �

Consider the set Ψ = {ζ∗, ηL, ηE |∆xh1 = 0, Vh1 = 0} re-

sulting from Th. 2. The second level of the hierarchical con-

troller utilizes internal RWs actuation to achieve reorientation

in Ψ as follows.

Theorem 3: Consider two modules with coupled dynamics

as modeled in (11), with orientation error functions, ReL and

ReE from (17), in the set Ψ, which is ensured by Th. 2. The

closed-loop dynamics, resulting from the second hierarchical

control law, FH2 = (τw1
, τw2

), designed as
{

τw1
= −K1

d θ̇1 −RT
21γE + γL

τw2
= −K2

d θ̇2 + γE
(26)

with damping gains Dh2
= diag(K1

d ,K
2
d) ≻ 0 is uniformly

asymptotically stable.

Proof 3: Consider the Lyapunov candidate function as the

total internal energy of the system, considering a inertia-

shaping multiplication factor Λ⊤
i on the RWs inertia, as

Wh2
=

1

2
θ̇Th2

Mθh2
θ̇h2

+
1

2
tr(KE

p (I3 −ReE ))

+
1

2
tr(KL

p (I3 −ReL))
(27)

which satisfies the bounds α ≤ Wh2
≤ α, see Lemma 3 for

boundedness argument. Here,

Mθh2
= diag(ΛT

1 Mθ1 ,Λ
T
2 Mθ2), θ̇h2

= (θ̇1, θ̇2).

The derivative of Wh2
is obtained by exploiting Lemma 2, as

Ẇh2
= θ̇Th2

Mθh2
θ̈h2

+
[

(R1K
L
p ∆xL)

T γT
L

]
[

0

−Λ1A1θ̇1

]

+
[

(RT
21K

E
p ∆xE)

T γT
E

]
[

p∧21(R21Λ1θ̇1)

R21Λ1θ̇1 − Λ2θ̇2

]

.

Introducing the second hierarchical control law, (26), and

leveraging the skew-symmetric property of Ṁ−2C, we obtain

Ẇh2
= −θ̇Th2

Dh2
θ̇h2

≤ 0. (28)

This proves the uniform stability of the considered system

about the equilibrium orientations ReL and ReE , (17). Thus,

the system’s asymptotic stability is concluded by invoking

LaSalle’s invariance principle [23]. �

Note that Th. 3 is not independent, and holds in the set Ψ,

i.e., Th. 2 is a prerequisite.

V. VALIDATION RESULTS AND DISCUSSION

In this section, the two proposed control laws are validated

and quantitatively compared using simulation results to em-

phasize the key differences between them. Additionally, the

free-flying controller is experimentally validated on the DLR

OOS-SIM using the proposed HIL approach.

The modules are considered to be typical in-orbit demon-

stration satellites [24] with mass m = 309 kg and locked in-

ertia I = diag(150.2, 126.4, 126.4) kgm2, and RWs and RCS
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Fig. 4: Comparison of Locked (top) and Relative (bottom) rotational
error norms between the hierarchical controller in an ideal scenario
with zero initial momentum, and hierarchical and free-flying con-
trollers with non-zero initial momentum.
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Fig. 5: Comparison between the total average fuel/thruster of the two
modules, in the hierarchical and free-flying control modes.

thruster configuration as in [19]. The initial attitude errors are

specified as ReL ≡ [5.5; 4.5; 4] ◦ and ReE ≡ [10; 6; −6] ◦ in

the locked and shape systems respectively, while no desired

setpoint is set for the translational task. First, an ideal scenario

with zero initial angular momentum is simulated. In this

case, only the second-level hierarchical controller (Th. 3) is

sufficient to ensure convergence of the angular errors, as shown

in Fig. 4 (blue). However, in practice, momentum can be non-

zero due to factors like discrete RCS actuator dynamics and

initial orbital injection. Hence, in the second simulation, an

initial momentum is introduced in the simulation as a relative

spin of 0.03 rad/s around the y-axis. In this context, the free-

flying controller achieves faster orientation convergence by

leveraging the full availability of actuators, as shown in Fig. 4

(yellow). Meanwhile, the hierarchical controller (Th. 2 and 3)

provides a fuel-efficient solution by limiting RCS usage to the

momentum task, as depicted in Fig. 5. This is achieved due to

the higher velocity contribution of the RWs in the hierarchical

case, as shown in Fig. 6. Furthermore, in Fig. 4 it is observed

that a comparable level of accuracy is achieved with the

two proposed controllers: the hierarchical controller provides

better error behavior in the locked maneuver, while the free-

flying controller exhibits lower error in the relative motion.

The hierarchical controller is characterized by convergence

in a longer time compared to the free-flying controller while

ensuring fuel efficiency as its primary advantage. Given that

space missions often span extended periods and prioritize fuel

conservation, this controller offers a suitable option.

Experimental validation: To experimentally validate the

proposed dynamics, (11), the proposed HIL approach in
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Fig. 6: Contribution of the RWs in terms of velocities in the
free-flying (top) and hierarchical (bottom) control modes.

Sec. III was implemented on the DLR OOS-SIM, see Fig.

1. The RWs and RCS were implemented as performance

models [19], while the relative rigid motions were replicated

using the robotic facility. The simulated mission scenario

involved two modules with initial locked momentum around

one axis. The leader module was required to perform an

approach maneuver towards an unactuated module, which

precludes pose control of the locked system as this requires

both systems to be actuated. Thus, no setpoint requirements

were placed on the locked system. In this setup, the free-

flying controller (Th. 1) was required to achieve a desired

shape (relative pose) of [5; 2; 2] cm and [2; 2; 0] ◦. The modules

are initialized with locked velocity ξL = [0; 0.02; 0] rad/s and

shape velocity ξE = [0.01; 0.02; 0] rad/s.

The free-flying control (Th. 1) was enabled at the time

indicated by the arrow at the top of Fig. 7. Mutual interactions

were imposed during the HIL experiment by applying a force

on the HIL robot (i = 1), with peaks at t = 130 s and 160 s,

emphasized by dashed lines at the bottom of Fig. 7. These

internal forces (measured) appear as interactions between

the modules when integrated with the proposed dynamics,

(11). Thus, this experiment demonstrates the robustness of

the control approach against mutual interactions as explained

below. The control task is achieved using RCS forces, Fig. 7,

and RWs torques, Fig. 8. The latter are rated for 0.1N.m, as

in practical cases [24]. The evolution of relative pose errors

is shown in Fig. 9. Here, the relative error only achieves

a bounded behaviour as a consequence of the discrete RCS

actuation dynamics [19]. Nonetheless, the control strategy

remains robust against mutual interactions and the error values

stay bounded once the interactions cease. This is relevant

for proximity operations, where inadvertent contacts might

occur. Fig. 10 shows the key advantage of using the proposed

dynamics in the HIL approach: only the shape momentum

is affected by the contact disturbances and is regulated by

the controller action, while the total momentum dynamics

is uncontrolled and is propagated only in software. Note

that the HIL simulation was realized without acceleration

measurements in contrast to [16]. This experiment validates

the proposed free-flying approach to exploit the combined

effect of RCS and RWs for motion control of fixed-inertia

multibody modules.
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Fig. 7: Leader module’s forces actuated by the RCS (top), and contact
forces (bottom) over time, obtained from the HIL experiment.
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module over time, obtained from the HIL experiment.

VI. CONCLUSION

In this letter, a momentum-shape formulation of the dy-

namics is exploited to design, firstly, a novel HIL simulation

framework and, secondly, two centralized motion control laws

for a fleet of fixed-inertia multibody satellites. The dynamics

result from extending the passive decomposition theory, which

has previously been limited to rigid bodies. This approach

results in dynamics that are inertia-decoupled, singularity-

free, and independent of the modules’ absolute poses. Both

controllers are characterized by inertia-shaping for enhanced

responsiveness of RWs, and serve complementary phases (con-

vergence time vs. fuel-efficiency) of the mission to regulate the

relative and locked motions of the modules. Furthermore, the

free-flying controller is experimentally validated on the DLR

OOS-SIM HIL facility. The key advantage of the proposed

HIL simulation is that the relative motion is replicated on the

hardware while propagating the momentum in the software.

This enables the HIL simulation of faster tumbling motions.

In future work, the proposed theory will be extended to the

n agents case in Fig. 2 and variable inertia systems, e.g.,

articulated robotic mechanisms.

APPENDIX

1) Inertia and CC matrices of a single module: The inertia

matrix for a single module is observed as M̃ = diag(M,Mθ),
where M = diag(mI3, I), Mθ = AT Iw(A− ΛA).
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Fig. 9: Relative rotational (top) and translational (bottom) errors over
time, obtained from the HIL experiment.

0 50 100 150 200 250
0

10

20

30

40

time (s)

N
o
rm

o
f

th
e

M
o
m

en
ta

Shape Mom.
Locked Mom.

Fig. 10: Norm of the locked (uncontrolled) and shape (controlled)
momenta over time, obtained from the HIL experiment.

The CC matrix exhibits a valuable skew-symmetry property

among the off-diagonal terms:

C̃ =

[

C̃ξ

C̃ θ̇

]

=






(µ− ΛAθ̇)∧m 0 0
0 µ∧I (Iµ)∧ΛA
0 −(ATΛTµ)∧I −(Iµ)∧






2) Inertia and CC matrices of the proposed dynamics: The

overall inertia matrix is expressed as

M∗(g12) =diag(M1 +M
(1)
2 ,M2(I6 −A∗Ad−1

g12
),Mθ1 ,Mθ2)

The notation M (i) indicates that the inertia matrix is expressed

w.r.t the reference frame of module i. A reduced-inertia for the

shape system is observed in the second element of R.H.S.

The CC matrix is obtained by recalling the relation

Ṡ−1 = −S−1ṠS−1 and taking the time derivative of A∗ as

d

dt
A∗ =

d

dt
(M−1

tot )Ad−T
g12

M2 +M−1
tot

d

dt
(Ad−T

g12
M2)

= −(M−1
tot ṀtotM

−1
tot )Ad−T

g12
M2 −M−1

tot Ad−T
g12

adT
v12

M2

where finally Ṁtot = −Ad−T
g12

(adT
v12

M2 +M2adv12
)Ad−1

g12
.

3) Properties for the stability analysis:

Lemma 3: An energy function, Wf , defined for the multi-

body satellite and expressed as the sum of kinetic and potential

energies is bounded [25] as α ≤ Wf ≤ α.

Proof 4: See [25, Lemma 8] for the boundedness property.
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